728x90
300x250

[수학(Math)] 12. 행렬의 연산에 대한 성질

 

행렬들의 연산에 대한 기본적인 성질들에 대하여 살펴본다.

행렬들의 덧셈과 스칼라 곱셈, 그리고 상등관계의 정의에 의하여 집합 내에서 다음과 같은 성질이 성립함을 알 수 있다.

 

(정리1)
세 행렬  와 실수 에 대하여 다음이 성립한다.

 

 


 

[증명]

 

                        

                     

 

                      

 

행렬의 곱이 정의된다고 가정했을 때 실수에서 결합법칙과 배분법칙이 성립하는 것과 마찬가지로 곱에 대한 결합법칙과 배분법칙이 성립한다는 것을 다음 정리에 의하여 알 수 있다.

 

(정리2)
행렬 에 대하여 다음이 성립한다.


 

[증명]

행렬의 성분을 각각 로 놓으면 -성분은 이므로

-성분은 이다.

또한, 행렬 -성분은 이고 -성분은 이므로 -성분은 이다. 따라서 행렬 -성분이 모두 같기 때문에 등식이 성립한다.

 

(정리3)

행렬 에 대하여 다음이 성립한다.

 

 

[증명]

행렬의 성분을 각각 로 놓으면 -성분은 이므로 -성분은 이다.

또한, 행렬 -성분은 이고 -성분은 이므로 -성분은

이다. 따라서 행렬 -성분이 모두 같기 때문에 등식이 성립한다.

 

(정리4)

세 행렬 , , 에 대하여 다음이 성립한다.

 

 

 

[증명]

각 행렬의 성분을 , , 으로 놓으면 행렬 -성분은 이므로

-성분은 이다.

또한, 행렬 -성분은 이므로 -성분은

이다.

그런데

이므로 행렬 의 모든 -성분이 같다. 따라서 정리가 증명된다.

실수에서는 곱에 대하여 교환법칙이 성립하지만 행렬은 곱에 대하여 교환법칙이 성립하지 않는다는 사실을 다음 예제를 통하여 알 수 있다.

 

(예제)

두 행렬 에 대하여 는 각각 다음과 같다.

 

 

따라서 이다.

 

(정리)

행렬 에 대하여 연산 이 정의될 때 다음이 성립한다.

 

 

 

 

(예제)

다음 두 행렬의 곱 를 구하여라

 

 

[풀이]

행렬 을 각각 다음과 같이 놓자.

 

 

 

그러면

 

이다. 따라서 는 다음과 같다.

 

반응형

+ Recent posts